Cyclical Patterns in Irregular
Time Series Data

A, Stan Hurp
The University of (lasgow

and

A. David McDonald
CSIRO Division of Fisheries
Hobart

Abstract Time series data which are observed at irregular time intervals often arise in economics and the
bio-sciences. FHxisting methods for modelling these data have focused on the discretisation of continnous
processes, A method is proposed for fitting cyclical components o irregular time-series data based on the
continuous-discrete Kalman filter which incorporates numerical integration of the differential equations
describing the model. The method is applied to seawater temperature data and empirical sampling distributions
for parameter estimators are enumerated. The supporting samnpling distributions suggest that the method yields
estimates which have satisfactory statistical properties.

1. INTRODUCTION z. A STRUCTURAL TIME SERIES
MODEL FOR ISOLATING CYCLICAL

The problem of estimating the parameters of PATTERNS

dynamic economic and biophysical processes when

data are sampled at irregular time intervals has long Structural time series models enable time-series

been of inlerest to applied researchers. Irregular data 1o be modelled by cyclical components and/or

data arise commonly in the monitoring of other unobserved components as dictated by

biophysical processes as a result of sampling, gconomic theory or the structural characteristics of

equipment failure and random evenis. Irregular the data. The literature on structural tme series

eCONOMmIC time seriés are becoming more Common models is relatively well developed (see Harvey

as a resuit of increased availability of reliable, high- [1989] for the original exposition and Harvey et al.,

frequency data. Exchange-rate markets, for [1992] and McDonald and Humn [1994] for

example, give rise to continucusly-generated data applications) and the weatment offered here will be

that are reported at irregular discrete intervals. relatively terse.

Standard estimation methods become Jess precise

when data are not spaced evenly. In this paper attention will be restricted to a simple
additive-cycle model in contiruous time. The

In this paper we explore structural time series model takes the form

methods for estimating cyclical components in time
series when data are spaced irregularly. We

propose an estimation technigue based on the dil, 00 0 Ju 10 0 dzy
likelihood function recovered from the prediction dy, [=[01n{e) A |y, Jdi+|010] dz,
errors of a continyous-discrete filtering problem, . 0 % 1 " 601 .
where the differential sguations comprising the ay; | ) n(e) W dzy, |
filter are integrated numerically. As the method is 1)
entirely numerical it has application beyond the
simple structural fime series p'a_radigm we adppt with i, the random walk component of the time
here, We demonstrate the resulting technique using ) "
monthly seawater temperate data and report series and yyand W, the unobservable components
empirical sampling distributions for the parameter relating to the cycle. The error vector
estimates. . . .
’ (cﬂi;, dzw , a’zW*]' is a vector of increments in
t {

the Wiener process with mean zero and variances
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G;{, cﬁ, and U%,*l. The cyclical component has

two parameters: A, the cycle frequency, and o, the
damping factor. If O<exp(a)<l the cycle is
stationary (Harvey, 1989 p. 40).

The cyclical component is in fact a mixture of sine
and cosine waves and hence facilifates the
modelling of the periodic component that may exist
in the data series y.. This is demonstrated easily
nsing the matrix exponential definition together
with the power serics expansions for the sine and
cosine functions. Ignoring the random walk
component, without 1oss of generality, the discrete
anafogue of (1) is
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where the error-vector covariance matrix is
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The gansition matrix in {2) contains irigonometric
terms which are clearly cyclical. It should be noted
that some data or theoretical considerations may
prompt the addition of several cyclical components.
fn modelling scawater temperatures from the North
Sen, however, we have found that a model with a
random walk and one cyclical component is
sufficient to yield homoscedastic, uncorrelated
residuals,

The model is compieled by the addition of a
mcasurement equation that relates the dependent
time-series variable (o the state variables

L
ye={1 10}y +V, {4

"

Wy
where Vi is an error term of mean zero and
covariance matriz R,
3, CSTIVATION PROCEDURE
Let the linear dynamic struciural time series model
ve denoted using the vector (Tig) stochastic
differcatial equation

dx(y) = Fx()dt + GdB(1) {5

L' 7o satisfy identification conditions
G“:, andog,* will be constrained to be equal
(Harvey, [1989]).

where x 18 the vector of the states, F and G are non-
random coefficient matrices and dB is the vector of
increments in the Wiener processes with

E{dB dp')=Qat.

Linear observations are iaken at lime instants t, TGt
ngcessarily spaced evenly, which we now denote

¥ =Mx, +V, (@)

where y; is the vector of observations and M is g
non-random coefficient matrix and V, is white
foise with ¥~N(O,R)).

Given a sequence of observations {y; ... yT} and
the coefficient matrices F, G and M, the Kalman
filter (Kalman {19601, [19631: Kalman and Bucy
[1961]}) is a recarsive procedure for this continous-
discrete system which compules an estimate of the
conditional mean X, and error covariance matrix
P,. The theory of Kalman filtering is well
developed and its implementation well documented
(sce, for example, Jazwinski [1970]; Gelb [ 19747;
Maybeck [1979]; Harvey [1989]) so a brief
statement ol the filter will suffice here. The
optimal filter for the continuous-discrete system (5)
and {&) is as follows. Between abservations the
condilional mean and covariance matrix satisfy the
differential equations

dxity

—l = Ey{t
" {t

g«il?gz =FPUO+POF +GQG
£

At observation t they satisfy the difference
eguations. :

2 () =3, )+ K[y, - M#, ()] (7)
P (+)=P (-}~ K MP, (=) ®)

where Ky is the Kalman gain matrix given by
K, = P (<)M [MP, (b +R, ] ()

where (+) refers to the value in period © after
including the measurcment of that time. Of course
in the current application the coefficient matrices ¥,
M and G are unknown. The central role of the
filter, however, is {0 enable the construction of the
likelihood function of the unknown model
parameters via what is known as the prediction-
error decomposition.  This opens the way for
estimation of the parameiers in the coefficient
matrices when these are unknown,



The prediction errors from the filter® are defined as
Et = yt e M%t(m)

with covariance matrix
var (g,) =, = MP,(-)M' +R,.

The likelihood function for T observations is then
given by

- T T
Togl = wziog 27 —-%« > log]ﬂ;{; - %« Eeiﬂzlgt
2 K=1 K=l
{(am

which i3 {0 be maximised by some numnerical
optimisation procedure.

Existing estimation metbods have focussed on the
use of the matrix exponential fuonction as a
convenient representation of the solution of systems
of this type. The procedure advocated by Harvey
[1989] when dealing with reai time applications is
o discretise (5) 1o yield

x, = exp{FAUxX _, + T, (i1)

where At represents the time period between the

observation at t and that at 1-1, with T}y a white
noise disturbance term of mean zerp and covariance
matrix

Q, = | M exp(FANGQG' exp(FAL) ds

<

The matrix exponential, however, often does not
Iend itself to numerical computation {(Moler and
Yan Loan [1978]). As many models which may be
of general interest do not have convenient closed
form solutions, we propose numerical integration of
the initial-valoe problem (5) and {6) for which
reliable numerical methods are available (Cheney
and Kincaid [1985); Press et al, [1986]). The
solation of the equations for the conditional mean
and covariance matrix of the states is obtained at
tume { for the current parameter estimates by
numerical integration using the Runge-Kutia-
Felberg (RKF) algorithm. This is an order-5
scheme which uses 6 function evaluations o
advance the solution by one time step and
simultaneously compnte the local truncation error
in performing this step.  This error is then
compared with the user-specified accuracy and the
step accepted or re-taken if it is too large. An error
tolerance of 5x10-11 was used for the present paper.

2 Harvey {19897, who advocated the use of the
Kalman filter in time seres problems gives an
in depth discussion of the derivation of the
tikelihpod funciion,
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4. APPLICATION TO SEAWATER
TEMPERATURE DATA

To demonstrate the proposcd estimation procedure
we report the results of fitting a random walk and
one Cyclical compenent to monthly mean seawater
surface temperature from the island of Syl
Gemmany. The data set spans the period January
1958-September 1991, Estimates based on the
entire regularly-spaced data set of 405 observations
are reported in Table 1. These results indicate that
the complete data set is consistent with a stationary
cycle of 12 periods. A plot of the fitted and actual
data is provided in Figure 1,

Table 1. Maximum Likelihood Estimates with
Regularly-spaced Data

Parameter Esumate Standard Frror
Gﬁ 0.560x 103 | 0.050x 10-3
o5 0070% 102 | 0.010x 1073
oR 0.0156 0.140 x 10-3
o 0.9994 0.030 x 1072
A 0.5240 0.060 x 10-3
(o) -0.6273 0.006

W*(o) -0.6708 0.006

y{o} and yw*{o} are estimated starting values for the
unobscrvable cyclical component.

Having established a benchmark with the complete
data set, random samples of 90% of the data set
were taken 10 create irregularly-spaced data with
which maximum likelihood estimates were
recaleulated, Individoal data points were discarded
at random to leave a sample of 364 monthly
observations spanning the 405 monaths of the
complete series. Each sample, therefore, consists
of 364 scawater temperature records spaced
between one and three months apart. In fotal 1620
samples were generated, the estimation results for
which appear in Table 2 and Figures 2-4.

Table Z, Maximum Likelihood Bstimates with
irrpgulariy-Spaced Sample Data

Parameter | Mean of Standard Deviation
Estimates

o2 0530 x 107 | 0.283 x 1073

6%, 0.065x 1073 | 0.025 x 10

o 0.0162 (.0012

o 0.9994 0.092 x 16-3

A 0.5241 0.112x 103

y{o) 0,623 0.009

W¥(0) -(.6605 0.015
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The results recorded in Tables 1 and 2 ilustrate the
high precision possible for parameter estimates
when time-series data are reported irregularly,
When 10% of the data are discarded randomly,
subsequent cstimates of o, A and yi{o) are centred
tightly around those obtained using the complete
data set. In order o ascertain how well the method
performs when smaller samples of (move} irregular
data are used Table 3 contlains means and standard
deviations of parameter estimates from 100
simulations for 90, 80, ..., 50 percent of the full data
set. These results indicate that precision is
mainiaincd guite well in the face of increased
irregularity. For data of the type described above,
therefore, the msthod proposed for isolating
cyclical patierns in irregular time-series data is very
Promising,

5. CONCLUSION

It is yet to be established precisely how robust the
method 18 when only small data sets are available,
when the cyclical signal is weak and when data-
recording intervals are very irreguiar. Work in
progress by the present authors, however, is very
encouraging in this regard. Early results indicate
that data recorded at highly irregular intervals do
not present difficulties for precision of the
estimators or for tracking the datla with forecasts.
Accordingly, we believe that the proposed method
is worthy of application in a broader coniext than
that of the present paper.

Table 3. Mean and Standard Deviation of Estimates from 100 Simulations

Parameter Mean {Standard Deviation)
90% Sample 80% Sample T0% Sample 60% Sample 50% Sample
ol 0598 x 102 | 0573x10° | 0628x10°3 | 0645x 107 | 0.640x 1073
(0403 x 10-9) | (0406 x 10 | (0612x 10D | (0874 x 10°3) | (0.0011)
g2 0.067x 107 | 0.065x10° | 0068x107 | 0083x103 | 0.077x 10-3
v (0.026 x10°9) | (0.042x 1077 | (0.054x10°%) | (0.094x 10 | (0.087 x 105
o2 0.0159 0.0167 0.0174 0.0188 0.0208
{0.0015) {0.0019) (0.0031) 0.0045) {0.0057)
o .9994 0.9994 0.5994 0.9993 0.9993
) (0119 x 103 | (0144 x 1073 | (0190 10°%y | (0.278 x 103 | (0.0253 x 103
% (1.5241 (.05240 0.5240 0.5241 0.5241
(0125 x 109 | (01892 10°%) | (0.233x10°%) | (0.2908x 103 | (0.277 x 10-3)
(o) -0.6249 -(.6268 -0.6279 -0.6274 -0.6347
(0.0086) 0.0118) (0.0133) (0.0151) (0.0254)
W0 -0.6614 -0.6605 -0.6600 0.6673 -0.5623
(0.0174) (0.019% (0.0241) (0.0276) {0.0344)
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